Solid organ fabrication: comparison of decellularization to 3D bioprinting

نویسندگان

  • Jangwook P. Jung
  • Didarul B. Bhuiyan
  • Brenda M. Ogle
چکیده

Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and a few commercial products are in market. The road to more complex, high demand, solid organs including heart, kidney and lung will require substantive technical advancement. Here, we consider two emerging technologies for solid organ fabrication. One is decellularization of cadaveric organs followed by repopulation with terminally differentiated or progenitor cells. The other is 3D bioprinting to deposit cell-laden bio-inks to attain complex tissue architecture. We reviewed the development and evolution of the two technologies and evaluated relative strengths needed to produce solid organs, with special emphasis on the heart and other tissues of the cardiovascular system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jet-based 3d Printing of Biological Constructs

Organ printing is the layer-by-layer bottom-up fabrication of complex cellular organization of native tissues or organs by bioprinting multiple cell types and other biomaterials at designated positions. The rising success rate of transplants has resulted in a critical need for more tissues and organs. Approximately 95,000 people are on the waiting list for new organs in the U.S. alone, and some...

متن کامل

A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication

Tissue engineering has been focused on the fabrication of vascularized 3D tissue for decades. Most recently, bioprinting, especially tissue and organ printing, has shown great potential to enable automated robotic-based fabrication of 3D vascularized tissues and organs that are readily available for in vitro studies or in vivo transplantation. Studies have demonstrated the feasibility of the ti...

متن کامل

Bioprinting is changing regenerative medicine forever.

3D printing, or solid freeform fabrication, applied to regenerative medicine brings technologies from several industries together to help solve unique challenges in both basic science and tissue engineering. By more finely organizing cells and supporting structures precisely in 3D space, we will gain critical knowledge of cell-cell communications and cell-environment interactions. As we increas...

متن کامل

Living Bacterial Sacrificial Porogens to Engineer Decellularized Porous Scaffolds

Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative medicine and drug discovery as viable tissue mimics. However, the existing hydrogel fabrication techniques suffer from limited control over pore interconnectivity, density an...

متن کامل

3D bioprinting for engineering complex tissues.

Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, curren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2016